Search results for "tuberous sclerosis complex"
showing 5 items of 5 documents
Functional Assessment of Variants in the TSC1 and TSC2 Genes Identified in Individuals with Tuberous Sclerosis Complex
2011
The effects of missense changes and small in-frame deletions and insertions on protein function are not easy to predict, and the identification of such variants in individuals at risk of a genetic disease can complicate genetic counselling. One option is to perform functional tests to assess whether the variants affect protein function. We have used this strategy to characterize variants identified in the TSC1 and TSC2 genes in individuals with, or suspected of having, Tuberous Sclerosis Complex (TSC). Here we present an overview of our functional studies on 45 TSC1 and 107 TSC2 variants. Using a standardized protocol we classified 16 TSC1 variants and 70 TSC2 variants as pathogenic. In add…
miR-20b and miR-451a Are Involved in Gastric Carcinogenesis through the PI3K/AKT/mTOR Signaling Pathway: Data from Gastric Cancer Patients, Cell Line…
2020
Gastric cancer (GC) is one of the most common and lethal gastrointestinal malignancies worldwide. Many studies have shown that development of GC and other malignancies is mainly driven by alterations of cellular signaling pathways. MicroRNAs (miRNAs) are small noncoding molecules that function as tumor-suppressors or oncogenes, playing an essential role in a variety of fundamental biological processes. In order to understand the functional relevance of miRNA dysregulation, studies analyzing their target genes are of major importance. Here, we chose to analyze two miRNAs, miR-20b and miR-451a, shown to be deregulated in many different malignancies, including GC. Deregulated expression of miR…
Haploinsufficiency of Tsc2 Leads to Hyperexcitability of Medial Prefrontal Cortex via Weakening of Tonic GABAB Receptor-mediated Inhibition.
2020
Abstract Loss-of-function mutation in one of the tumor suppressor genes TSC1 or TSC2 is associated with several neurological and psychiatric diseases, including autism spectrum disorders (ASDs). As an imbalance between excitatory and inhibitory neurotransmission, E/I ratio is believed to contribute to the development of these disorders, we investigated synaptic transmission during the first postnatal month using the Tsc2+/− mouse model. Electrophysiological recordings were performed in acute brain slices of medial prefrontal cortex. E/I ratio at postnatal day (P) 15–19 is increased in Tsc2+/− mice as compared with wildtype (WT). At P25–30, facilitated GABAergic transmission reduces E/I rati…
mTORC1 activation in B cells confers impairment of marginal zone microarchitecture by exaggerating cathepsin activity
2018
Mammalian target of rapamycin complex 1 (mTORC1) is a key regulator of cell metabolism and lymphocyte proliferation. It is inhibited by the tuberous sclerosis complex (TSC), a heterodimer of TSC1 and TSC2. Deletion of either gene results in robust activation of mTORC1. Mature B cells reside in the spleen at two major anatomical locations, the marginal zone (MZ) and follicles. The MZ constitutes the first line of humoral response against blood‐borne pathogens and undergoes atrophy in chronic inflammation. In previous work, we showed that mice deleted for TSC1 in their B cells (TSC1(BKO)) have almost no MZ B cells, whereas follicular B cells are minimally affected. To explore potential underl…
Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of tuberous sclerosis complex-associated lesions
2011
SummaryTuberous Sclerosis Complex (TSC) is a multisystem genetic disorder characterized by hamartomatous neurological lesions that exhibit abnormal cell proliferation and differentiation. Hyperactivation of mTOR pathway by mutations in either the Tsc1 or Tsc2 gene underlies TSC pathogenesis, but involvement of specific neural cell populations in the formation of TSC-associated neurological lesions remains unclear. We deleted Tsc1 in Emx1-expressing embryonic telencephalic neural stem cells (NSCs) and found that mutant mice faithfully recapitulated TSC neuropathological lesions, such as cortical lamination defects and subependymal nodules (SENs). These alterations were caused by enhanced gen…